Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327650 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035272 | PLOS |
JMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFAm J Health Promot
January 2025
San Diego State University, School of Public Health, San Diego, CA, USA.
Background: Targeting cardiovascular fitness (CVF), rather than weight loss, may be a more acceptable and feasible outcome among Latinos.
Purpose: The purpose of this study was to test the short-term efficacy of (AFL), a fitness- and lifestyle-focused behavioral intervention to improve CVF and performance among Latino families.
Methods: Latino parent-child dyads (n = 137) were randomized to either AFL program or a waitlist control condition.
PLoS One
January 2025
School of Life Course and Population Sciences, King's College London, London, United Kingdom.
Introduction: High-Flow Nasal Therapy (HFNT) is an innovative non-invasive form of respiratory support. Compared to standard oxygen therapy (SOT), there is an equipoise regarding the effect of HFNT on patient-centred outcomes among those at high risk of developing postoperative pulmonary complications after undergoing cardiac surgery. The NOTACS trial aims to determine the clinical and cost-effectiveness of HFNT compared to SOT within 90 days of surgery in the United Kingdom, Australia, and New Zealand.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFEnviron Technol
February 2025
PGEAGRI/CCET - Center of Exact Sciences and Technology, State University of Western of Paraná - UNIOESTE, Cascavel, Brazil.
The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!