Background: About half of people with Down syndrome (DS) exhibit some form of congenital heart disease (CHD); however, trisomy for human chromosome 21 (Hsa21) alone is insufficient to cause CHD, as half of all people with DS have a normal heart, suggesting that genetic modifiers interact with dosage-sensitive gene(s) on Hsa21 to result in CHD. We hypothesize that a threshold exists in both DS and euploid populations for the number of genetic perturbations that can be tolerated before CHD results.

Methods And Results: We ascertained a group of individuals with DS and complete atrioventricular septal defect and sequenced 2 candidate genes for CHD: CRELD1, which is associated with atrioventricular septal defect in people with or without DS, and HEY2, whose mouse ortholog (Hey2) produces septal defects when mutated. Several deleterious variants were identified, but the frequency of these potential modifiers was low. We crossed mice with mutant forms of these potential modifiers to the Ts65Dn mouse model of DS. Crossing loss-of-function alleles of either Creld1 or Hey2 onto the trisomic background caused a significant increase in the frequency of CHD, demonstrating an interaction between the modifiers and trisomic genes. We showed further that, although each of these mutant modifiers is benign by itself, they interact to affect heart development when inherited together.

Conclusions: Using mouse models of Down syndrome and of genes associated with congenital heart disease, we demonstrate a biological basis for an interaction that supports a threshold hypothesis for additive effects of genetic modifiers in the sensitized trisomic population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386785PMC
http://dx.doi.org/10.1161/CIRCGENETICS.111.960872DOI Listing

Publication Analysis

Top Keywords

genetic modifiers
12
congenital heart
12
heart disease
12
half people
8
atrioventricular septal
8
septal defect
8
potential modifiers
8
chd
6
modifiers
6
heart
5

Similar Publications

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.

View Article and Find Full Text PDF

Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!