Methodological aspects of exhaled breath condensate collection and analysis.

J Breath Res

Department of Paediatrics, Orbis Medical Center, Sittard, The Netherlands.

Published: June 2012

The collection and analysis of exhaled breath condensate (EBC) may be useful for the management of patients with chronic respiratory disease at all ages. It is a promising technique due to its apparent simplicity and non-invasiveness. EBC does not disturb an ongoing respiratory inflammation. However, the methodology remains controversial, as it is not yet standardized. The current diversity of the methods used to collect and preserve EBC, the analytical pitfalls and the high degree of within-subject variability are the main issues that hamper further development into a clinical useful technique. In order to facilitate the process of standardization, a simplified schematic approach is proposed. An update of available data identified open issues on EBC methodology. These issues were then classified into three separate conditions related to their influence before, during or after the condensation process: (1) pre-condenser conditions related to subject and/or environment; (2) condenser conditions related to condenser equipment; and (3) post-condenser conditions related to preservation and/or analysis. This simplified methodological approach highlights the potential influence of the many techniques used before, during and after condensation of exhaled breath. It may also serve as a methodological checklist for a more systematical approach of EBC research and development.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7155/6/2/027102DOI Listing

Publication Analysis

Top Keywords

exhaled breath
12
breath condensate
8
collection analysis
8
ebc
5
methodological aspects
4
aspects exhaled
4
condensate collection
4
analysis collection
4
analysis exhaled
4
condensate ebc
4

Similar Publications

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

Exhaled Breath Analysis Using a Novel Electronic Nose for Different Respiratory Disease Entities.

Lung

January 2025

Department of Internal Medicine, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.

Purpose: Electronic noses (eNose) and gas chromatography mass spectrometry (GC-MS) are two important breath analysis approaches for differentiating between respiratory diseases. We evaluated the performance of a novel electronic nose for different respiratory diseases, and exhaled breath samples from patients were analyzed by GC-MS.

Materials And Methods: Patients with lung cancer, pneumonia, structural lung diseases, and healthy controls were recruited (May 2019-July 2022).

View Article and Find Full Text PDF

A handheld biofluorometric system for acetone detection in exhaled breath condensates.

Analyst

January 2025

Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.

View Article and Find Full Text PDF

Human breath gas analysis is a noninvasive disease diagnostic approach used to identify different pathological conditions in the human body. Monitoring breath acetone (CHO) and ammonia (NH) as biomarkers is vital in diagnosing diabetes mellitus and liver disorders, respectively. In this article, the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique is proposed and demonstrated for measuring CHO and NH in human exhaled breath samples.

View Article and Find Full Text PDF

A Doped Surface Ionization Method for Ion Mobility Spectrometry.

Rapid Commun Mass Spectrom

March 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.

Rationale: Exhaled breath can be used for early warning of disease, with organic nitrogen compounds, including triethylamine (TEA), being linked to various medical conditions. Surface ionization ion mobility spectrometry (SI-IMS) facilitates the direct detection of TEA in exhaled breath. However, the presence of multiple ionization products of TEA poses challenges for both quantitative and qualitative analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!