AM-694 (1-[(5-fluoropentyl)-1H-indol-3-yl]-(2-iodophenyl)methanone), a synthetic indole-based cannabimimetic, was first reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via the Early Warning System (EWS) by Irish authorities in 2010. Using gas chromatography-mass spectrometry (GC-MS), we have identified six AM-694 metabolites in post-ingestion samples. The metabolites were tentatively identified as products of (1) hydrolytic defluorination, (2) carboxylation, (3) monohydroxylation of N-alkyl chain, and (4) hydrolytic defluorination combined with monohydroxylation of N-alkyl chain. The parent compound was not detected. The excretion of major metabolites was observed up to 117 h following administration. One metabolite (a product of hydrolytic defluorination) was also identified in urine samples from two individuals admitted to hospital suffering from suspected drug overdoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dta.1336 | DOI Listing |
Arch Toxicol
September 2024
West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
5F-EDMB-PICA is a newly emerged synthetic cannabinoid which has been characterized in relevant literature in recent years. Although phase-I metabolites of 5F-EDMB-PICA have been partly reported, the phase-II metabolism of this synthetic cannabinoid has not been studied yet. In this study, we established a phase-I and phase-II metabolism model in vitro by using pooled human liver microsomes, NADPH regeneration system, and UGT incubation system, with 1 mg/ml 5F-EDMB-PICA added and incubated at 37 °C for 60 min.
View Article and Find Full Text PDFFluorination of organic compounds plays an important role in the chemical and pharmaceutical industry and is often applied in order to improve physicochemical parameters or modify pharmacological properties. While oxidative and reductive defluorination have been shown to be responsible for the metabolic degradation of organofluorine compounds, the involvement of hydrolytic mechanisms catalyzed by human enzymes has not been reported so far. Here, we investigated the enzymatic defluorination of terminally monofluorinated aliphates with [1-(5-fluoropentyl)-1-indol-3-yl]-1-naphthalenyl-methanone (AM-2201) as a model substance.
View Article and Find Full Text PDFNat Water
May 2023
Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States.
Chlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination.
View Article and Find Full Text PDFEnviron Sci Technol Lett
September 2023
Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States.
FEBS J
October 2023
Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada.
Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!