The presence of high-abundance proteins in complex protein mixtures often masks low-abundance proteins and causes loss of resolution of 2DE. Protein fractionation steps conducted prior to 2DE can enhance the detection of low-abundance proteins and improve the resolution of 2DE. Here, we report a method to prefractionate soluble protein extracts based on protein thermal denaturation. Soluble proteins were extracted from maize embryos and leaves and Escherichia coli cells. Through heating at 95°C for 5 min, soluble protein extracts were prefractionated as heat stable protein fraction (the supernatant) and heat labile protein fraction (the precipitate). Our results showed that heat prefractionation enhanced the separation of proteins in both fractions by 2DE, thereby increasing the chance of detecting low-abundance proteins, many of which were nonvisible in unfractionated extract. In maize embryo, 330 spots were detected in soluble protein extract, while 577 spots were detected after prefractionation. Furthermore, this prefractionation method facilitated the enrichment, detection, and identification of de novo synthesized stress proteins. Because of its simplicity, the one-step heat prefractionation minimizes protein loss. Finally, heat prefractionation requires no expensive special hardware or reagents, and provides an alternative prefractionation for increasing the resolving power of 2DE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201100475 | DOI Listing |
Nat Commun
December 2024
College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea.
Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.
View Article and Find Full Text PDFFront Immunol
December 2024
School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia.
Seminal fluid provides for the carriage and nutrition of sperm, but also modulates immunity to prevent allo-rejection of sperm by the female. Immune suppression by seminal fluid has been associated with extracellular vesicles, originally termed prostasomes, which contain CD52, a glycosylated glycophosphoinositol-anchored peptide released from testicular epithelial cells. Previously, we reported that human T cell-derived CD52, bound to the danger-associated molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor.
View Article and Find Full Text PDFJACC Adv
January 2025
Emory University School of Medicine, Division of Cardiology, Department of Medicine, Atlanta, Georgia, USA.
Background: Higher soluble urokinase plasminogen activator receptor (suPAR) levels are associated with adverse outcomes in chronic heart failure (HF).
Objectives: The authors assessed the association between proteomics-based suPAR levels and incident HF risk in the general population.
Methods: In 40,418 UK Biobank participants without HF or coronary artery disease at enrollment, the association between Olink-based suPAR levels measured as relative protein expression levels and incident all-cause, ischemic, and nonischemic HF was analyzed by competing-risk regression, while accounting for all-cause death as a competing risk.
Mol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!