Not lost in translation: stepwise regulation of microRNA targets.

EMBO J

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

Published: May 2012

AI Article Synopsis

  • MicroRNAs (miRNAs) are short, noncoding RNAs that are vital for regulating various physiological processes and diseases, although their exact mechanisms are still not fully understood.
  • Research has shown that while miRNAs were thought to primarily inhibit translation, they also play a significant role in decreasing the stability of target mRNAs, leading to ongoing debates about the relationship between mRNA translation repression and decay.
  • A study by Bazzini et al. (2012) reveals that in developing zebrafish embryos, miR-430 inhibits the initiation of translation of target mRNAs before triggering their breakdown, suggesting a sequential action of repression and decay.

Article Abstract

MicroRNAs (miRNAs) are endogenous, ~22-nucleotide-long, noncoding RNAs that play critical roles in physiology and disease via mechanisms that remain obscure. Although numerous studies implicate miRNAs in repression of translation, more recent reports suggest that the major role of miRNAs is in reduction of target mRNA stability. Because mRNA translation and stability are intimately connected, it has been a challenge to establish whether miRNAs induce translational repression, mRNA decay, or both. If miRNAs reduce both mRNA translation and stability, the timing and contribution of each process to overall repression is unclear. Indeed, it has been debated whether mRNA decay is a cause or consequence of miRNA-mediated translational repression. On the other hand, if these events are mutually exclusive, what determines which mechanism is used? In a recent issue of Science, Bazzini et al (2012) use genome-wide ribosome footprinting and RNA sequencing (RNA-Seq) to demonstrate that in developing zebrafish embryos, miR-430 naturally represses translation initiation of target mRNAs, followed by their deadenylation and decay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365420PMC
http://dx.doi.org/10.1038/emboj.2012.119DOI Listing

Publication Analysis

Top Keywords

mrna translation
8
translation stability
8
translational repression
8
mrna decay
8
mirnas
5
mrna
5
lost translation
4
translation stepwise
4
stepwise regulation
4
regulation microrna
4

Similar Publications

Ring finger protein 5 mediates STING degradation through ubiquitinating K135 and K155 in a teleost fish.

Front Immunol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Stimulator of interferon genes (STING) is a key connector protein in interferon (IFN) signaling, crucial for IFN induction during the activation of antiviral innate immunity. In mammals, ring finger protein 5 (RNF5) functions as an E3 ubiquitin ligase, mediating STING regulation through K150 ubiquitylation to prevent excessive IFN production. However, the mechanisms underlying RNF5's regulation of STING in teleost fish remain unknown.

View Article and Find Full Text PDF

Transactivation response (TAR) RNA-binding protein 2 (TRBP) plays a critical role in microRNA (miRNA) biosynthesis, with aberrant expression linked to various cancers. Previously, we identified , a phenyloxazole derivative that disrupts the TRBP-Dicer interaction in hepatocellular carcinoma (HCC). In this study, we optimized this scaffold and substituent, leading to the discovery of , a 2-phenylthiazole-5-carboxylic acid derivative with nanomolar inhibitory activity (EC = 0.

View Article and Find Full Text PDF

Revisiting Endoplasmic Reticulum Homeostasis, an Expanding Frontier Between Host Plants and Pathogens.

Plant Cell Environ

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

The endoplasmic reticulum (ER) serves as the primary site for protein biosynthesis and processing, with ER homeostasis being essential for the survival of plant cells. Numerous studies have underscored the pivotal role of the ER as a battleground for host-pathogen interactions. Pathogens secrete effectors to subvert the host ER and manipulate ER-mediated defense responses, fostering an infection-permissive environment for their proliferation.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13.

View Article and Find Full Text PDF

TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.

Genetics

December 2024

Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.

Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!