Biochemical and histological characterization of tomato mutants.

An Acad Bras Cienc

Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brasil.

Published: June 2012

Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H(2)O(2)) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0001-37652012005000022DOI Listing

Publication Analysis

Top Keywords

mutants
9
tomato mutants
8
mutants exhibited
8
biochemical histological
4
histological characterization
4
characterization tomato
4
mutants biochemical
4
biochemical responses
4
responses inherent
4
inherent antioxidant
4

Similar Publications

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.

View Article and Find Full Text PDF

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.

View Article and Find Full Text PDF

Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability.

Plant Cell Environ

January 2025

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.

Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.

View Article and Find Full Text PDF

The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!