Structural and property relationships of ixiolite structured ZnTiNb(2)O(8) microwave dielectric materials were studied by structure refinement and Raman spectra analysis. The vibration modes which have Raman activities of the ixiolite structure were assigned for the first time. The bands with wavenumbers greater than 450 cm(-1) can be associated with several modes (A(g(2)), B(3g(1)), B(3g(2)), A(g(1)), B(1g(2)), A(g(3)), B(2g(2))) involving the stretching of the cation-O bonds. For wavenumbers between 250 and 450 cm(-1), the bands are due, principally, to the bending of O-cation-O (B(1g(1)), B(2g(1)), B(1g(3))). The origin of the bands with wavenumbers below 250 cm(-1) would be lattice vibrations (B(1g(4)), A(g(4)), B(3g(4)), B(2g(4))), mainly associated with cation ions. The correlation between bond strength and packing fraction, Raman shift, full width at half maximum (FWHM) of Raman spectra were discussed. With increase of bond strength, the oxygen octahedron became rigid, the Raman shift increased, and the damping behavior became weaker. With increase of Raman shift, the dielectric constant decreased. With increase of packing fraction and decrease of FWHM, the Q(f) (quality factor × resonance frequency) value increased. The τ(f) (temperature coefficient of resonance frequency) decreased with increase of bond strength. And there was no direct relationship between oxygen octahedron distortion and τ(f). The excellent microwave dielectric properties of ZnTiNb(2)O(8) in this work were: dielectric constant (ε) = 34.4, Q(f) = 56,900 GHz, τ(f) = -47.94 × 10(-6)/°C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt12451c | DOI Listing |
Sci Rep
January 2025
Microwave Engineering Department, Electronics Research Institute (ERI) Cairo, Cairo, Egypt.
This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.
View Article and Find Full Text PDFNat Commun
January 2025
College of Materials Science and Technology; Key Laboratory of Material Preparation and Protection for Harsh Environment; Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China.
With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.
View Article and Find Full Text PDFSmall
December 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. Electronic address:
Frequent glucose monitoring is essential for effective diabetes management. Currently, glucose monitoring is done using invasive methods such as finger-pricking and subcutaneous sensing. However, these methods can cause discomfort, heighten the risk of infection, and some sensing devices need frequent calibration.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!