A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. | LitMetric

Electrospun scaffolds are used extensively in tissue-engineering applications as they offer a cell-friendly microenvironment. However, one major limitation is the dense fibers, small pore size and consequently poor cell infiltration. Here, we employ a femtosecond (FS) laser system to ablate and create microscale features on electrospun poly(L-lactide) (PLLA) nanofibrous scaffolds. Upon determining the ablation parameters, we pattern structured holes with diameters of 50, 100 and 200 μm and spacings of 50 and 200 μm between adjacent holes on the scaffolds. The elastic moduli of ablated scaffolds decrease with the decrease in spacing and the increase in hole size. Cells seeded on the laser-ablated scaffolds exhibit different morphology but similar proliferation rate when compared with control (non-ablated) scaffold. Furthermore, animal studies indicate that ablated scaffolds facilitate endothelial cell ingrowth as well as drastically increase M2 macrophage and overall cell infiltration. These findings demonstrate that FS laser ablation can be used to increase cell infiltration into nanofibrous scaffolds. Laser ablation not only can create desired features in micrometer length scale but also presents a new approach in the fabrication of three-dimensional porous constructs for tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425609PMC
http://dx.doi.org/10.1016/j.actbio.2012.04.023DOI Listing

Publication Analysis

Top Keywords

cell infiltration
16
laser ablation
12
femtosecond laser
8
scaffolds
8
electrospun scaffolds
8
nanofibrous scaffolds
8
200 μm
8
ablated scaffolds
8
cell
5
ablation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!