Objective: Surface roughness parameters of various intraocular lenses (IOLs) biomaterials using atomic force microscopy (AFM) are compared. Variation, if any, in the micro-roughness properties of different IOLs made up of the same biomaterial is also explored. Retrospective analysis of posterior capsular opacification (PCO) incidence has been followed up for a period of four years post IOL implantation to evaluate the correlation of PCO formation with surface roughness of IOLs.

Design: Experimental materials study. MATERIALS AND PARTICIPANTS: Surface characteristics of 20 different IOL models were assessed using AFM. These IOL models were made up of PMMA or HEMA or acrylic hydrophobic or acrylic hydrophilic or silicone. Retrospective analysis of PCO incidence in 3629 eyes of 2656 patients implanted with the same IOL models was performed.

Methods: Topological characteristics of 20 different IOLs made up of 5 different biomaterials including (i) PMMA, (ii) HEMA, (iii) acrylic hydrophobic, (iv) acrylic hydrophilic and (v) silicone were evaluated using AFM in the tapping mode. Images were acquired with a resolution of 256 × 256 data points per scan at a scan rate of 0.5 Hz per line and a scan size of 10 × 10μm. Rate of PCO formation in 3629 eyes of 2656 patients implanted with the five different IOL biomaterials was retrospectively analyzed.

Results: AFM images of IOL optic surfaces showed a collection of pores, grooves, ridges and surface irregularities. Surface roughness parameters of the IOL optics were significantly different on comparing lenses of different materials. Acrylic hydrophobic IOLs had minimum surface roughness while acrylic hydrophilic IOLs showed the highest surface roughness. Different IOL models of the same biomaterial showed varied topological roughness characteristics. Retrospective analyses of PCO formation rate after IOL implantation was carried out, which revealed that rate of PCO incidence, was directly proportional to the increase in surface micro-roughness of IOLs.

Conclusions: AFM is a powerful technique for the topological characterization of IOLs. Acrylic hydrophobic IOLs showed minimum surface roughness properties as well as minimum PCO incidence over a period of four years post implantation. It is, therefore, tempting to consider acrylic hydrophobic IOLs over other IOL biomaterials as the ideal biocompatible material for lowering PCO incidence. These results suggest an urgent need for manufacturers to optimize the various steps involved in the fabrication of IOLs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2012.03.015DOI Listing

Publication Analysis

Top Keywords

surface roughness
24
pco incidence
20
acrylic hydrophobic
20
iol models
16
pco formation
12
acrylic hydrophilic
12
hydrophobic iols
12
surface
10
iol
10
iols
9

Similar Publications

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

Cephalopods produce dynamic colors and skin patterns for communication and camouflage via stratified networks of neuronally actuated yellow, red, and brown chromatophore organs, each filled with thousands of pigment granules. While compositional analysis of chromatophore granules in Doryteuthis pealeii reveals the pigments as ommochromes, the ultrastructural features of the granules and their effects on bulk coloration have not been explored. To investigate this, we isolated granules from specific colored chromatophores and imaged them using multiple modalities.

View Article and Find Full Text PDF

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

In order to investigate the influence of shear on contact characteristics and fluid flow evolution of rough rock fractures, a series of shear-flow tests were carried out by numerical experiments. Firstly, a sandstone specimen with a rough fracture was made in the laboratory, and the numerical model of the fracture was reconstructed in FLAC3D software. Experiments were conducted to investigate the depth of penetration of the fracture under different normal stress (1, 3, and 5 MPa) and shear displacement (2, 4, 6, 8, and 10 mm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!