Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Kinin B1 and B2 receptors (kB1R and kB2R) play important roles in many physiological and pathological processes. In some cases, kB1R or kB2R activation can have overlapping or complementary beneficial effects, thus an activator of both receptors might be advantageous. We found that replacement of the C-terminal Arg in the natural kB2R activators bradykinin (BK) or kallidin (KD) with Lys (K(9)-BK or K(10)-KD) resulted in agonists that effectively stimulate the downstream signaling of both the kB1R and kB2R as measured by increased inositol turnover, intracellular calcium, ERK1/2 phosphorylation, arachidonic acid release and NO production. However, K(9)-BK and K(10)-KD displayed some characteristics of biased agonism for kB2Rs as indicated by the rapid kinetics of ERK1/2 phosphorylation induced by K(9)-BK or K(10)-KD compared with the prolonged response mediated by BK or KD. In contrast, kinetics of ERK phosphorylation stimulated by K(10)-KD activation of the kB1R was the same as that induced by known kB1R agonist des-Arg(10)-KD. Furthermore, the endocytosis of kB2Rs mediated by K(9)-BK and K(10)-KD was remarkably less than that induced by BK and KD respectively. K(10)-KD stimulated kB1R and kB2R-dependent calcium responses and ERK1/2 phosphorylation in bovine endothelial cells. In cytokine-treated human endothelial cells, K(10)-KD stimulated ERK1/2 phosphorylation and a transient peak of NO production that was primarily kB2R-dependent. K(10)-KD also stimulated prolonged NO production that was both kB1R and kB2R-dependent. These data provide the first examples of dual agonists of kB1R and kB2R, and a biased agonist of kB2R and may provide useful clues for developing dual modulators of kB1Rs and kB2Rs for potential therapeutic use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362676 | PMC |
http://dx.doi.org/10.1016/j.cellsig.2012.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!