Public concern about possible health effects of EMF radiation from mobile phone masts has led to an increase of epidemiological studies and health risk assessments which, in turn, require adequate methods of exposure estimation. Difficulties in exposure modelling are exacerbated both by the complexity of the propagation processes, and the need to obtain estimates for large study populations in order to provide sufficient statistical power to detect or exclude the small relative risks that might exist. Use of geographical information system (GIS) techniques offers the means to make such computations efficiently. This paper describes the development and field validation of a GIS-based exposure model (Geomorf). The model uses a modified Gaussian formulation to represent spatial variations in power densities around mobile phone masts, on the basis of power output, antenna height, tilt and the surrounding propagation environment. Obstruction by topography is allowed for, through use of a visibility function. Model calibration was done using field data from 151 measurement sites (1510 antenna-specific measurements) around a group of masts in a rural location, and 50 measurement sites (658 antenna-specific measurements) in an urban area. Different parameter settings were found to be necessary in urban and rural areas to obtain optimum results. The calibrated models were then validated against independent sets of data gathered from measurement surveys in rural and urban areas, and model performance was compared with that of two commonly used path-loss models (the COST-231 adaptations of the Hata and Walfisch-Ikegami models). Model performance was found to vary somewhat between the rural and urban areas, and at different measurement levels (antenna-specific power density, total power density), but overall gave good estimates (R(2)=0.641 and 0.615, RMSE=10.7 and 6.7 dB m at the antenna and site-level respectively). Performance was considerably better than that of both path loss models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2012.03.066 | DOI Listing |
Heliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Jiaotong University: Shanghai Jiao Tong University, College of Smart Energy, CHINA.
Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).
View Article and Find Full Text PDFMater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFNano Lett
January 2025
College of Energy, Xiamen University, Xiamen 361102, China.
The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!