This study evaluated the use of PVA cryogels to encapsulate slow-growing anammox bacteria for deammonification treatment of wastewater. The cryogel pellets were prepared by freezing-thawing at -8 °C. On average, pellets contained 11.8 mg-TSS/g-pellet of enriched anammox sludge NRRL B-50286 (Candidatus Brocadia caroliniensis) in 4-mm cubes. They were tested with synthetic and partially nitrified swine wastewater using continuous stirred-tank reactors packed at 20% (w/v). The immobilized gel was retained inside the reactor by a screen that eliminated the need of sludge recycling. The stoichiometry of anammox reaction was maintained for more than 5 months under non-sterile conditions. The process was not limited by substrates availability unless quite low N concentration (<5 mg/L) achieving >93% removal efficiency. In mass balances, >80% of the potential N conversion activity was achieved (2920 mg-N/kg-pellet/d). In addition, the immobilized bacteria were resilient to inhibition at high nitrite concentrations (244-270 mg-N/L).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.03.077DOI Listing

Publication Analysis

Top Keywords

anammox sludge
8
anammox
4
sludge immobilized
4
immobilized polyvinyl
4
polyvinyl alcohol
4
alcohol pva
4
pva cryogel
4
cryogel carriers
4
carriers study
4
study evaluated
4

Similar Publications

Microbial manganese redox cycling drives co-removal of nitrate and ammonium.

J Environ Manage

January 2025

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:

Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.

View Article and Find Full Text PDF

Community assembly and succession of the functional membrane biofilm in the anammox dynamic membrane bioreactor: Deterministic assembly of anammox bacteria.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China. Electronic address:

The anammox dynamic membrane bioreactor (DMBR) exhibits potential for efficient nitrogen removal via anammox processes. The functional membrane biofilm in the anammox DMBR significantly enhances nitrogen removal, ensuring robust operation. Nevertheless, ecological mechanisms underpinning the nitrogen removal function of the membrane biofilm remain unclear.

View Article and Find Full Text PDF

The hybrid bioreactor combining sulfate-reducing ammonium oxidation (Sulfammox) and Anammox offered potential for simultaneous nitrogen and sulfur removal, but the removal efficiency and microbial mechanism remain unclear. This study demonstrated that in the hybrid bioreactor, the ammonium utilization rate (AUR) of Sulfammox increased by 5.42 times.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!