Precipitation, stabilization and molecular modeling of ZnS nanoparticles in the presence of cetyltrimethylammonium bromide.

J Colloid Interface Sci

Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic.

Published: July 2012

AI Article Synopsis

  • ZnS nanoparticles were created in solutions with cationic surfactant CTAB, showing a decrease in their sizes as CTAB concentration increased, reaching stabilized sizes at higher concentrations.
  • The hydrodynamic diameters of these nanoparticles varied significantly depending on the CTAB concentration, with some measured sizes going as low as 23 nm.
  • Transmission electron microscopy (TEM) revealed that the nanoparticles at higher CTAB levels were surrounded by positively charged micelles, which were preferred to arrange in a bilayer rather than a monolayer.

Article Abstract

ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.2 nm within CTAB concentrations of 0.4-1.5 mmol L(-1). Above the concentration of 1.5 mmol L(-1), the radii were stabilized at R=2.0 nm and increased up to R=2.5 nm after 24 h. The hydrodynamic diameters of CTAB-ZnS structures observed by the dynamic light scattering (DLS) method ranged from 130 nm to 23 nm depending on CTAB concentrations of 0.5-1.5 mmol L(-1). The complex structures were observed by transmission electron microscopy (TEM). At the higher CTAB concentrations, ZnS nanoparticles were surrounded by CTA(+) bilayers forming positively charged micelles with the diameter of 10nm. The positive zeta-potentials of the micelles and their agglomerates were from 16 mV to 33 mV. Wurtzite and sphalerite nanoparticles with R=2.0 nm and 2.5 nm covered by CTA(+) were modeled with and without water. Calculated sublimation energies confirmed that a bilayer arrangement of CTA(+) on the ZnS nanoparticles was preferred to a monolayer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.03.073DOI Listing

Publication Analysis

Top Keywords

zns nanoparticles
20
ctab concentrations
12
mmol l-1
12
cetyltrimethylammonium bromide
8
structures observed
8
nanoparticles
6
zns
5
precipitation stabilization
4
stabilization molecular
4
molecular modeling
4

Similar Publications

Background: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.

Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.

View Article and Find Full Text PDF

An electrically activable nanochip to intensify gas-ionic-immunotherapy.

Sci Bull (Beijing)

November 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China. Electronic address:

Excess intracellular HS induces destructive mitochondrial toxicity, while overload of Zn results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of HS and Zn was developed for enhanced gas-ionic-immunotherapy (GIIT).

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored how different heat treatments affected the thermoluminescence (TL) and structure of zinc sulfide (ZnS) samples, revealing that annealing increased the proportion of the hexagonal wurtzite phase.
  • - The best thermoluminescence intensity was found in a sample with 8.2% wurtzite and 91.8% cubic zinc sulfide, with the analysis showing well-formed, aggregated ZnS nanoparticles.
  • - The researchers used advanced techniques to analyze TL glow curves, identifying multiple trapping energy peaks and determining activation energies related to electron traps in the samples.
View Article and Find Full Text PDF

Copper depletion-induced tumor cuproptosis.

Chem Sci

November 2024

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing Jiangsu 210023 China

Copper homeostasis is crucial for cells, especially for rapidly proliferating cancerous cells. Copper imbalance-induced cell death (, cuproptosis) has emerged as a new strategy for tumor therapy. While copper accumulation-induced cuproptosis has been extensively investigated and its underlying mechanism recently elaborated, copper depletion-induced cuproptosis remains largely unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of detecting non-steroidal anti-inflammatory drugs (NSAIDs) due to their common use and possible effects on health and the environment.
  • Recent advancements in sensing technologies for NSAIDs are explored, particularly focusing on molecular receptors using specialized fluorescent molecules and advanced nanostructured assemblies.
  • The review also addresses the binding mechanisms, challenges, and future directions in developing innovative sensors for rapid and selective NSAID detection, filling a gap in the existing literature on this topic.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: