Recent work has shown that genetic robustness can either facilitate or impede adaptation. But the impact of environmental robustness on adaptation remains unclear. Environmental robustness helps ensure that organisms consistently develop the same phenotype in the face of "environmental noise" during development. Under purifying selection, those genotypes that express the optimal phenotype most reliably will be selectively favored. The resulting reduction in genetic variation tends to slow adaptation when the population is faced with a novel target phenotype. However, environmental noise sometimes induces the expression of an alternative advantageous phenotype, which may speed adaptation by genetic assimilation. Here, we use a population-genetic model to explore how these two opposing effects of environmental noise influence the capacity of a population to adapt. We analyze how the rate of adaptation depends on the frequency of environmental noise, the degree of environmental robustness in the population, the distribution of environmental robustness across genotypes, the population size, and the strength of selection for a newly adaptive phenotype. Over a broad regime, we find that environmental noise can either facilitate or impede adaptation. Our analysis uncovers several surprising insights about the relationship between environmental noise and adaptation, and it provides a general framework for interpreting empirical studies of both genetic and environmental robustness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.2011.01526.x | DOI Listing |
ACS Nano
January 2025
Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.
View Article and Find Full Text PDFLangmuir
January 2025
School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, MH 416004, India.
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
Proc Natl Acad Sci U S A
February 2025
Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!