The field of toxicology is on the cusp of a major transformation in how the safety and hazard of chemicals are evaluated for potential effects on human health and the environment. Brought on by the recognition of the limitations of the current paradigm in terms of cost, time, and throughput, combined with the ever increasing power of modern biological tools to probe mechanisms of chemical-biological interactions at finer and finer resolutions, 21st century toxicology is rapidly taking shape. A key element of the new approach is a focus on the molecular and cellular pathways that are the targets of chemical interactions. By understanding toxicity in this manner, we begin to learn how chemicals cause toxicity, as opposed to merely what diseases or health effects they might cause. This deeper understanding leads to increasing confidence in identifying which populations might be at risk, significant susceptibility factors, and key influences on the shape of the dose-response curve. The U. S. Environmental Protection Agency (EPA) initiated the ToxCast, or "toxicity forecaster", program 5 years ago to gain understanding of the strengths and limitations of the new approach by starting to test relatively large numbers (hundreds) of chemicals against an equally large number of biological assays. Using computational approaches, the EPA is building decision support tools based on ToxCast in vitro screening results to help prioritize chemicals for further investigation, as well as developing predictive models for a number of health outcomes. This perspective provides a summary of the initial, proof of concept, Phase I of ToxCast that has laid the groundwork for the next phases and future directions of the program.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx3000939DOI Listing

Publication Analysis

Top Keywords

decision support
8
support tools
8
update epa's
4
toxcast
4
epa's toxcast
4
toxcast program
4
program providing
4
providing high
4
high throughput
4
throughput decision
4

Similar Publications

Pathways to One Health: Enhancing Inter-Sectoral Collaboration in Pakistan.

Ecohealth

January 2025

Health Services Academy, Chak Shahzad, Park Road, Islamabad, 44000, Pakistan.

One Health is an integrative approach aiming to achieve optimal health outcomes by recognizing the interconnection between humans, animals, and the environment. This study explores the understanding, perspectives, hurdles, and implications of intersectoral collaboration within Pakistan's human health system, focusing on One Health principles. A qualitative phenomenological approach was employed, involving 17 key informant interviews with purposively selected stakeholders from public health, agriculture, veterinary medicine, agriculture and environmental science.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.

View Article and Find Full Text PDF

Effect of intramuscular treatment with different iron dextran dosages and non-inferiority study to gleptoferron.

Acta Vet Scand

January 2025

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.

Background: Prevention of iron deficiency in suckling piglets by intramuscular injection of a standardized amount of iron dextran or gleptoferron in the first days of life can lead to over- or underdosage with respective health risks. Currently, combined iron products containing an active substance against coccidia are also used on farms. When using a combination product targeting two diseases, an adjustment of the necessary amount of iron to prevent anaemia in the frame of a farm-specific treatment protocol is not possible.

View Article and Find Full Text PDF

Background: To ensure the complete traceability of healthcare commodities, robust end-to-end data management protocols are needed for the supply chain. In Ethiopia, digital tools like Dagu-2 are used in the lower levels of the healthcare supply chain. However, there is a lack of information regarding the implementation status, factors, and challenges of Dagu-2, as it is a recent upgrade from the offline Dagu-1 application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!