Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The formation of metal-containing Ag-mercaptoethanol (-Ag-S(R)-)(n) complexes on DNA chain scaffold was studied by UV spectroscopy, zeta potential measurement, and fluorescence and transmission electron microscopies. Experimental results made clear the mechanism of DNA mineralization and compaction, according to which intercalation of silver cations into DNA scaffold and further formation of (-Ag-S(R)-)(n) oligomeric complexes on DNA induce efficient DNA chain compaction by terminal Ag(+) cations. By transmission electron microscopy the formation of fiber-like DNA-templated nanostructures was observed. DNA-Ag-thiol complexes are promising for DNA-templated engineering of hybrid 1D nanostructures with adjustable chemical functionalities by choosing appropriate thiol ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm300277f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!