AI Article Synopsis

  • Ultrasound was added to the microelectrolysis (ME) method to boost the treatment efficiency of phosphoric wastewater, showing significant improvements in phosphorus removal.
  • The optimal conditions for maximum phosphorus removal of 92.4% were achieved at a pH of 4.0 with specific Fe/C and Fe/H2O ratios after 60 minutes of treatment.
  • Reaction kinetics indicated that the degradation processes followed a pseudo-first-order kinetic model, highlighting a synergistic effect between ultrasound and the ME method for enhanced phosphorus removal.

Article Abstract

In this research work, ultrasound was introduced to the microelectrolysis (ME) method to improve the treatment efficiency for phosphoric wastewater. The effects of treatment time, Fe/C ratio (v/v) and iron filings dosage on the efficiency of phosphorus removal from wastewater with different initial pH values were investigated. The results showed that the phosphorus removal efficiency by the ME method was significantly enhanced in the presence of ultrasound. The maximum removal rate of phosphorus (RRP) for the wastewater with an initial pH value of 4.0 was 92.4% after 60 min of treatment when the Fe/C and Fe/H2O volume ratio were 2/1 and 1/10, respectively. The reaction kinetics analysis indicated that the phosphorus degradation processes for the ultrasonic and ME methods as well as the ultrasonically assisted ME method (UME) were in accordance with the pseudo-first-order kinetic model. The synergetic effect of the combined ultrasound and ME method for phosphorus removal was also studied by reaction kinetics analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2011.559483DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
12
phosphoric wastewater
8
microelectrolysis method
8
wastewater initial
8
reaction kinetics
8
kinetics analysis
8
method
5
phosphorus
5
treatment
4
treatment phosphoric
4

Similar Publications

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Purification mechanism of emergent aquatic plants on polluted water: A review.

J Environ Manage

January 2025

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China. Electronic address:

Nitrogen and phosphorus inputs to surface water bodies lead to a decline in water quality and a disruption in the balance of aquatic ecosystems. Emergent aquatic plants were widely used for their high efficiency in removing nitrogen and phosphorus from surface waters. However, there was a lack of systematic analyses on the purification of surface waters by emergent aquatic plants, and the mechanism of differences in nitrogen and phosphorus removal by different plants needs to be further revealed.

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Increasing toxic metal pollution in the aquatic ecosystem since the industrial revolution produces serious environmental challenges and has raised critical questions of ecological and human health implications. As a typical aquatic plant, Nasturtium officinale (N. officinale) has drawn significant attention due to its remarkable accumulation of heavy metals and other harmful substances from polluted water.

View Article and Find Full Text PDF

Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!