The UV/S2O8(2-) process was applied to decompose bisphenol A (BPA), which is a representative endocrine-disrupting chemical (EDC), and was comared with the UV/H2O2 process. The BPA degradation efficiency by UV/S2O8(2-) was increased by increasing S2O8(2-) concentration or decreasing BPA concentration. The presence of humic acid caused an inhibitory effect. The BPA oxidation rate by UV/S2O8(2-) was increased in the following order: neutral pH (pH(i) = 7) < acidic pH (pH(i) = 4) < basic pH (pH(i) = 10). The main oxidizing species in the UV/S2O8(2-) system was sulphate radical (SO4(-*)), whereas the main oxidizing species in the UV/H2O2 system was OH radical (OH*). Compared with UV/H2O2, the UV/S2O8(2-) process showed higher performance for not only BPA degradation but also its mineralization, which means that SO4(-*) is a more effective oxidant for BPA than the OH*. The results shown in this study imply that the SO4(-*) -based UV/S2O8(2-) process can be an excellent alternative process for the widely used UV/H2O2 process, with higher remediation performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2011.579181 | DOI Listing |
Water Res
September 2015
School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China.
This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!