Wrist injuries are frequently observed after falls in snowboarding. In this study, laboratory experiments mimicking forward and backward falls were analysed. In six different falling scenarios, participants self-initiated falls from a static initial position. Eighteen volunteers conducted a total of 741 trials. Measurements were taken for basic parameters describing the kinematics as well as the biomechanical loading during impact, such as impact force, impact acceleration, and velocity. The effective mass affecting the wrist in a fall also was determined. The elbow angle at impact showed a more extended arm in backward falls compared to forward falls, whereas the wrist angle at impact remained similar in forward and backward falls. The study results suggest a new performance standard for wrist guards, indicating the following parameters to characterize an impact: an effective mass acting on one wrist of 3-5 kg, an impact angle of 75 degrees of the forearm relative to the ground, and an impact velocity of 3 m/s.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2011.637127DOI Listing

Publication Analysis

Top Keywords

backward falls
16
forward backward
12
impact
8
effective mass
8
angle impact
8
falls
7
wrist
5
characterizing mechanical
4
mechanical parameters
4
forward
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!