Properties of rabbit liver tissue aminoacyl-tRNA synthetases, associated with polyribosomes, were studied under conditions of normal state and within 12 hrs after simulation of myocardium infarction. Under conditions of myocardium infarction the activity of some forms of aminoacyl-tRNA synthetase was decreased in polyribosomes and protein fractions, liberated from polyribosomes by means of washing with buffer containing 0.5 M KCl. Polyribosomes stimulated the synthetases and protected them from heat inactivation. Deterioration of the synthetases interaction with polyribosomes appears to be among the factors responsible for impairment of protein biosynthesis under conditions of myocardium infarction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

myocardium infarction
12
conditions myocardium
8
polyribosomes
5
[interaction eukaryotic
4
eukaryotic aminoacyl-trna-synthases
4
aminoacyl-trna-synthases polyribosomes]
4
polyribosomes] properties
4
properties rabbit
4
rabbit liver
4
liver tissue
4

Similar Publications

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Vascular calcification(VC) significantly increases the risk of cardiovascular events, leading to thickening of the myocardium and arteries, coronary heart disease, heart failure, and potentially triggering myocardial infarction and sudden cardiac death. Although VC is a reversible process, there are currently no methods or medications in clinical practice that can completely reverse or cure it. The current treatment strategies primarily focus on slowing the progression of VC and exploring new diagnostic and therapeutic approaches, making the identification of early diagnostic markers for VC particularly important.

View Article and Find Full Text PDF

The UCP2/PINK1/LC3b-mediated mitophagy is involved in the protection of NRG1 against myocardial ischemia/reperfusion injury.

Redox Biol

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:

Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.

View Article and Find Full Text PDF

Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.

Regen Biomater

December 2024

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.

Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!