We have examined the effect of the O-linked glycan (OLG) structures of VWF on its interaction with the platelet receptor glycoprotein Ibα. The 10 OLGs were mutated individually and as clusters (Clus) on either and both sides of the A1 domain: Clus1 (N-terminal side), Clus2 (C-terminal side), and double cluster (DC), in both full-length-VWF and in a VWF construct spanning D' to A3 domains. Mutations did not alter VWF secretion by HEK293T cells, multimeric structure, or static collagen binding. The T1255A, Clus1, and DC variants caused increased ristocetin-mediated GPIbα binding to VWF. Platelet translocation rate on OLG mutants was increased because of reduced numbers of GPIbα binding sites but without effect on bond lifetime. In contrast, OLG mutants mediated increased platelet capture on collagen under high shear stress that was associated with increased adhesion of these variants to the collagen under flow. These findings suggest that removal of OLGs increases the flexibility of the hinge linker region between the D3 and A1 domain, facilitating VWF unfolding by shear stress, thereby enhancing its ability to bind collagen and capture platelets. These data demonstrate an important functional role of VWF OLGs under shear stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2012-02-410050DOI Listing

Publication Analysis

Top Keywords

shear stress
16
interaction platelet
8
platelet receptor
8
receptor glycoprotein
8
stress conditions
8
gpibα binding
8
olg mutants
8
vwf
6
o-linked glycosylation
4
glycosylation von
4

Similar Publications

Ceramic detachments in cladding systems are indicative of adhesion loss between the ceramic tiles and the substrate or its adhesive mortar due to inadequate quality workmanship, the quality of the adhesive mortar or that of the ceramic material, whether acting simultaneously or not. The shear stresses resulting from the ceramic tiles' expansion due to humidity accelerate this process. There is a shortage of studies on the quality of ceramic tiles and adhesive mortars.

View Article and Find Full Text PDF

This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (μCT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray μCT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs.

View Article and Find Full Text PDF

Triply periodic minimal surfaces (TPMSs) are known for their smooth, fully interconnected, and naturally porous characteristics, offering a superior alternative to traditional porous structures. These structures often suffer from stress concentration and a lack of adjustability. Using laser powder bed fusion (LPBF), we have fabricated Inconel 625 sheet-based TPMS lattice structures with four distinct topologies: Primitive, IWP, Diamond, and Gyroid.

View Article and Find Full Text PDF

Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.

View Article and Find Full Text PDF

Alkali-silica reaction (ASR) is an important factor that seriously affects the durability of reinforced concrete (RC) structures. The current research on alkali-aggregate mainly focuses on the deterioration mechanism of materials and the mechanical properties of standard specimens. However, there is a gap in the field of research on the effect of alkali-aggregate damage on the level of RC structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!