Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs. These genes are potential direct targets of phy-PIF signaling that regulate the primary downstream transcriptional circuitry. A second subset of PIF-dependent, early response genes, lacking G-box motifs, are enriched for auxin-responsive loci, and are thus potentially indirect targets of phy-PIF signaling, mediating the rapid cell expansion induced by shade. Comparing deetiolation- and shade-responsive transcriptomes identifies another subset of G-box-containing genes that reciprocally display rapid repression and induction in response to light and shade signals. These data define a core set of transcriptional and hormonal processes that appear to be dynamically poised to react rapidly to light-environment changes via perturbations in the mutually antagonistic actions of the phys and PIFs. Comparing the responsiveness of the pifq and triple pif mutants to light and shade confirms that the PIFs act with overlapping redundancy on seedling morphogenesis and transcriptional regulation but that each PIF contributes differentially to these responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398554 | PMC |
http://dx.doi.org/10.1105/tpc.112.095711 | DOI Listing |
J Environ Manage
January 2025
School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
Globally, there are more than 17,000 cargo-handling ports that are expected to double in capacity by 2030. Overwater structures are common in ports and create permanently shaded environments that can produce ecological shifts from primary-producer to consumer dominated communities. Yet, the extent of these structures across ports and their impact on light conditions and associated communities in different areas beneath has not been quantified.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.
View Article and Find Full Text PDFPhytoKeys
January 2025
Zhejiang Museum of Natural History, Zhejiang, Hangzhou, 310014, China Zhejiang Museum of Natural History Hangzhou China.
In this paper, is described as a new species based on morphological and molecular analyses, and its taxonomic relationships are discussed. Morphological analysis indicates should be classified in the genus Sedumsect.Sedum and is distinct from the related species and in the morphology of its solitary, light green and smooth stems, flattened leaves, larger, obovate and spurless sepals, yellow anthers, 22-30 ovules per carpel, oblique follicles, and its habitat on shaded slopes or rocks.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2024
International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus. Electronic address:
Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni detoxification. Here, we show that His (added together with 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China. Electronic address:
The macromolecular components of the seed coat, particularly lignin, play a critical role in regulating seed viability. In the maize-soybean intercropping (MSI) system, shading stress was reported to enhance the viability of soybean seeds. However, the specific role of seed coat lignin in this process remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!