Treatment of inflammatory diseases of the eye is especially challenging. Although physicians in antiquity had recognized the existence of ocular inflammatory disease, their lack of understanding of the immune system made successful treatment almost impossible. Throughout the 20th century, great advances in the diagnosis and treatment of uveitis led to unique treatment options. The development of corticosteroids in 1949 and its application to the eye in 1950 revolutionized therapeutic strategies. As the use of corticosteroids became more prevalent in treating ocular inflammatory diseases, so did its side effects. Due to the high morbidity in conjunction with long-term corticosteroid use, physicians pursued other agents, specifically through the employment of chemotherapeutic agents. The shift from exclusive corticosteroid monotherapy to steroid-sparing immunomodulatory therapy reshaped the landscape of treating ocular inflammatory disease. Over time, with increased efforts, new therapies were studied, trialed, and brought to the market. Today, in comparison to any other time in history, physicians have available to them the largest array of effective agents for achieving the ultimate goal: corticosteroid-free, durable remission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000336183 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Ophthalmology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
Purpose: To describe a case series of presumed Sympathetic Ophthalmia (SO) triggered by diode laser cyclophotocoagulation (CPC) for the treatment of neovascular glaucoma.
Methods: Patients developing bilateral granulomatous uveitis after CPC between 2014 and 2024. Cases with prior ocular trauma or penetrating ocular surgery were excluded.
Ocul Surf
January 2025
Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030 United States. Electronic address:
Purpose: To explore the destructive and protective effects and therapeutic targets of IL-36 cytokines in dry eye disease using a murine dry eye model.
Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated mice as controls. A topical challenge model was performed in normal mice with exogenous rmIL-36α, rhIL-38 and 2% ectoine, or PBS vehicle.
Adv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.
Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.
Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!