Two new dihydrochalcones (1, 2), as well as eight known compounds, piperaduncin C (3), 2',6'-dihydroxy-4'-methoxydihydrochalcone (4), 4,2',6'-trihydroxy-4'-methoxydihydrochalcone (5), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (6), 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (7), 4-hydroxy-3-(3-methyl-2-butenoyl)-5-(3-methyl-2-butenyl)-benzoic acid (8), 2,2-dimethyl-8-(3-methyl-2-butenyl)-2H-1-chromene-6-carboxylic acid (9), and 3-(3',7'-dimethyl-2',6'-octadienyl)-4-methoxybenzoic acid (10) were isolated from the leaves of Piper dennisii Trelease (Piperaceae), using a bioassay-guided fractionation to determine their antileishmanial potential. Among them, compound 10 exhibited the best antileishmanial activity (IC50 = 20.8 µM) against axenic amastigote forms of Leishmania amazonensis, with low cytotoxicity on murine macrophages. In the intracellular macrophage-infected model, compound 10 proved to be more active (IC50 = 4.2 µM). The chemical structures of compounds 1-10 were established based on the analysis of the spectroscopic data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0031-1298459 | DOI Listing |
Planta Med
June 2012
Université de Toulouse, UPS, UMR 152 (Pharmacochimie et Pharmacologie pour le Développement-PHARMA DEV), Toulouse, France.
Two new dihydrochalcones (1, 2), as well as eight known compounds, piperaduncin C (3), 2',6'-dihydroxy-4'-methoxydihydrochalcone (4), 4,2',6'-trihydroxy-4'-methoxydihydrochalcone (5), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (6), 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (7), 4-hydroxy-3-(3-methyl-2-butenoyl)-5-(3-methyl-2-butenyl)-benzoic acid (8), 2,2-dimethyl-8-(3-methyl-2-butenyl)-2H-1-chromene-6-carboxylic acid (9), and 3-(3',7'-dimethyl-2',6'-octadienyl)-4-methoxybenzoic acid (10) were isolated from the leaves of Piper dennisii Trelease (Piperaceae), using a bioassay-guided fractionation to determine their antileishmanial potential. Among them, compound 10 exhibited the best antileishmanial activity (IC50 = 20.8 µM) against axenic amastigote forms of Leishmania amazonensis, with low cytotoxicity on murine macrophages.
View Article and Find Full Text PDFJ Ethnopharmacol
June 2009
IFEA UMIFRE 17 CNRS/MAEE, Casilla 18-1217, Lima, Peru.
Aim Of The Study: Ninety-four ethanolic extracts of plants used medicinally by the Yanesha, an Amazonian Peruvian ethnic group, for affections related to leishmaniasis and malaria were screened in vitro against Leishmania amazonensis amastigotes and against a Plasmodium falciparum chloroquine resistant strain.
Materials And Methods: The viability of Leishmania amazonensis amastigote stages was assessed by the reduction of tetrazolium salt (MTT) while the impact on Plasmodium falciparum was determined by measuring the incorporation of radio-labelled hypoxanthine.
Results And Conclusions: Six plant species displayed good activity against Plasmodium falciparum chloroquine resistant strain (IC(50) < 10 microg/ml): a Monimiaceae, Siparuna aspera (Ruiz & Pavon), A.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!