Salvianolic acid A (Sal A) is a polyphenol extracted from the root of the Salvia miltiorrhiza bunge. Hydrogen peroxide (H(2)O(2)) is a major reactive oxygen species (ROS), which has been implicated in stroke and other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neuroprotective effects of Sal A in human SH-SY5Y neuroblastoma cells against H(2)O(2)-induced injury. Our results showed that cells pretreated with Sal A exhibited enhanced neuronal survival and that this protection was associated with an increase in adenosine triphosphate (ATP) and the stabilization of mitochondrial membrane potential. In addition, Sal A markedly decreased the excessive activation AMP-activated protein kinase (AMPK) and the serine-threonine protein kinase, Akt, in SH-SY5Ycells induced by H(2)O(2). In conclusion, our results demonstrated that Sal A protects SH-SY5Y cells against H(2)O(2)-induced oxidative stress and these protective effects are related to stress tolerance and not energy depletion via inhibition of the AMPK and Akt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.04.021DOI Listing

Publication Analysis

Top Keywords

salvianolic acid
8
human sh-sy5y
8
sh-sy5y neuroblastoma
8
neuroblastoma cells
8
stress tolerance
8
cells h2o2-induced
8
protein kinase
8
sal
5
acid protects
4
protects human
4

Similar Publications

Objectives: The quality of 30 batches of the Tibetan Dracocephali tangutici Herba was evaluated using HPLC fingerprinting and DNA sequences.

Methods: Botanical identification of 30 batches of D. tangutici herba was conducted using the DNA barcoding approach, specifically analyzing the ITS and rbcL sequences.

View Article and Find Full Text PDF

Biomimetic metal-phenolic nanocarrier for co-delivery of multiple phytomedical bioactive components for anti-atherosclerotic therapy.

Int J Pharm

January 2025

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China. Electronic address:

Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA).

View Article and Find Full Text PDF

Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.

Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.

View Article and Find Full Text PDF

, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.

View Article and Find Full Text PDF

Purpose: Salvianolate for injection (SFI) is a widely used treatment for acute myocardial infarction (AMI). This study aims to assess the efficacy and safety of SFI in treating AMI by synthesizing evidence from published randomized controlled trials (RCTs).

Methods: Seven databases were searched for relevant RCTs published up to 1 July 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!