The role of primary cilia in the gastrointestinal tract has not been examined. Here we report the presence of primary cilia on gastric endocrine cells producing gastrin, ghrelin, and somatostatin (Sst), hormones regulated by food intake. During eating, cilia in the gastric antrum decreased, whereas gastric acid and circulating gastrin increased. Mice fed high-fat chow showed a delayed decrease in antral cilia, increased plasma gastrin, and gastric acidity. Mice fed high-fat chow for 3 wk showed lower cilia numbers and acid but higher gastrin levels than mice fed a standard diet, suggesting that fat affects gastric physiology. Ex vivo experiments showed that cilia in the corpus responded to acid and distension, whereas cilia in the antrum responded to food. To analyze the role of gastric cilia, we conditionally deleted the intraflagellar transport protein Ift88 (Ift88(-/fl)). In fed Ift88(-/fl) mice, gastrin levels were higher, and gastric acidity was lower. Moreover, gastrin and Sst gene expression did not change in response to food as in controls. At 8 mo, Ift88(-/fl) mice developed foveolar hyperplasia, hypergastrinemia, and hypochlorhydria associated with endocrine dysfunction. Our results show that components of food (fat) are sensed by antral cilia on endocrine cells, which modulates gastrin secretion and gastric acidity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405261 | PMC |
http://dx.doi.org/10.1096/fj.11-197426 | DOI Listing |
Primary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.
View Article and Find Full Text PDFCell Struct Funct
January 2025
College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFGenetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies. In this study, we investigated zebrafish mutants of , a newly identified ADPKD gene, and observed phenotypes similar to those seen in mammalian models, including kidney cysts and bone defects. Using efficient microhomology-mediated end joining (MMEJ)-based genome editing technology, we demonstrated that CRISPRants recapitulate mutant phenotypes while bypassing the early lethality of the mutants to allow for renal cyst analysis in adult fish.
View Article and Find Full Text PDFBiophys Physicobiol
September 2024
Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!