Objectives: The conventional implementations of proton resonance frequency shift (PRFS) magnetic resonance thermometry (MRT) require the subtraction of single or multiple temporal references, a motion sensitive critical feature. A pilot study was conducted here to investigate the clinical feasibility of near-harmonic two-dimensional (2D) referenceless PRFS MRT, using patient data from MR-guided laser ablation of liver malignancies.

Methods: PRFS MRT with respiratory-triggered multi-slice gradient-recalled (GRE) acquisition was performed under free breathing in six patients. The precision of the novel referenceless MRT was compared with the reference phase subtraction. Coupling the referenceless MRT with a model-based, real-time compatible regularisation algorithm was also investigated.

Results: The precision of MRT was improved by a factor of 3.3 when using the referenceless method as compared to the reference phase subtraction. The approach combining referenceless PRFS MRT and model-based regularisation yielded an estimated precision of 0.7° to 2.1°C, resulting in millimetre-range agreement between the calculated thermal dose and the 24 h post-treatment unperfused regions in liver.

Conclusions: The application of the near-harmonic 2D referenceless MRT method was feasible in a clinical scenario of MR-guided laser-induced thermal therapy (LITT) ablation in liver and permitted accurate prediction of the thermal lesion under free breathing in conscious patients, obviating the need for a controlled breathing under general anaesthesia.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02656736.2012.670834DOI Listing

Publication Analysis

Top Keywords

referenceless prfs
12
free breathing
12
prfs mrt
12
referenceless mrt
12
pilot study
8
clinical feasibility
8
feasibility near-harmonic
8
near-harmonic referenceless
8
litt ablation
8
mrt
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!