Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The energetic and structural properties of fullerenes, carbon nanotubes and graphene interacting with vitamins A, B3 and C were studied by first principles simulations. These vitamins, which have antioxidant activities, give support to the cellular metabolism, have biochemical, therapeutic and cosmetic functions, and when combined with carbon nanostructures may have their chemical instability controlled. In this work, the results illustrate that the strongest interaction is between vitamin A and graphene. The binding energies found for the interactions between carbon nanostructures and these vitamins range from 0.10 to 0.93 eV. For all the configurations studied, a physisorption regime is observed without significant changes in the chemical and physical properties of the adsorbed vitamins, which is relevant for a drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2012.1434 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!