The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3923/pjbs.2011.933.938 | DOI Listing |
Front Nutr
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
Background: Tratt pomace (RRTP) contains valuable components like polyphenols and polysaccharides, which have high utilization value. Fermentation is an effective technique for creating beneficial nutrients that can improve the taste, appearance, and nutritional benefits of foods. Nevertheless, there is a lack of research on the alterations in chemical composition of RRTP during fermentation.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Centre for Animal Nutrition and Welfare, University of Veterinary Medicine, Vienna, Austria.
Increasing droughts adversely affect grasslands, diminishing the availability and quality of forages for ruminants. We have recently shown that mixed ensiling of drought-impaired grass (DIG) with sugar beet pulp (SBP) improved the conservation and feed value of silage. The application of silage additives may further improve the ruminal degradability, which may thereby shape the fermentation and microbiome in the rumen when those silages are tested as part of dairy diets.
View Article and Find Full Text PDFJ AOAC Int
January 2025
College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
Background: Yogurt has emerged as an essential nutritional food in contemporary diets, and the development of new multi-component yogurt formulations has become a focal point of current research.
Objective: In this study, the effects of fermentation compounds and the addition of sugar, soy milk on the quality and probiotic activity of milk-soy mixed yogurt were studied to determine the optimal formation of mixed yogurt.
Methods: The various fermentation compounds (YO-MIX 883, Lactobacillus Casei complex starter cultures, Lactobacillus Paracasei compound starter cultures), different concentrations of milk-soy additions (0, 25, 50, 75, 100%) and sugar (2, 4, 6, 8%) were tested within each experimental group, and the pH, appropriate acidity, and total viable bacterial count of the fermented milk-soy mixed yogurt were determined throughout the fermentation and refrigeration processes.
Food Sci Biotechnol
January 2025
Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea.
Unlabelled: was engineered to mitigate carbon catabolite repression to efficient co-fermenting mixed sugars, which are primary components of cellulosic biomass. KDH1 produced ethanol with 0.42 ± 0.
View Article and Find Full Text PDFBioresour Technol
January 2025
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!