Imaging experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 10(5) 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO(2) layer and of the Si-SiO(2) interface, using MOS (metal-oxide-semiconductor) capacitors manufactured on high-resistivity n-type silicon irradiated to X-ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance-voltage (C/G-V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose-dependent oxide charge density and three dominant radiation-induced interface states with Gaussian-like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G-V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0909049512002348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!