Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.24098DOI Listing

Publication Analysis

Top Keywords

homology models
12
force field
12
protein structure
8
molecular dynamics
8
dynamics simulations
8
simulations accurate
8
md-based refinement
8
field accuracy
8
simulations initiated
8
native structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!