Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we analytically investigate an optical signal detection scheme to mitigate the scintillation effect with the assistance of a co-propagating reference continuous wave (CW) light. Using the correlation coefficient between the intensities of the data light and the reference CW light, we mathematically derive their joint intensity distributions under two widely used atmospheric turbulence channel models, namely log-normal distributed channel model and Gamma-Gamma distributed channel model, respectively. We also carry out the Monte-Carlo (MC) simulation and show that theoretical results agree with simulation results well. Our analytical results reveal that when the correlation coefficient is 0.99, the power reductions to achieve BER of 10⁻³ are 12.3 dB and 20.4 dB under moderate and strong atmospheric turbulence conditions (i.e., Rytov variances of 1.0 and 4.0), respectively. In addition, the feasibility of the scheme applied to wavelength-division-multiplexed (WDM) free-space-optical (FSO) transmission systems is also investigated, where only a single reference CW light could be used to mitigate the scintillation effects on all WDM channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.009284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!