We present a new asymptotically exact analytical similariton solution of the generalized nonlinear Schrdinger equation for pulses propagating in fiber amplifiers and lasers with normal dispersion including the effect of gain saturation. Numerical simulations are in excellent agreement with this analytical solution describing self-similar linearly chirped parabolic pulses. We have also found that for small enough values of the dimensionless saturation energy parameter the fiber amplifiers and lasers can generate a new type of linearly chirped self-similar pulses, which we call Hyper-Gaussian similaritons. The analytical Hyper-Gaussian similariton solution of the generalized nonlinear Schrdinger equation is also in a good agreement with numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.008741DOI Listing

Publication Analysis

Top Keywords

fiber amplifiers
12
amplifiers lasers
12
hyper-gaussian similaritons
8
gain saturation
8
similariton solution
8
solution generalized
8
generalized nonlinear
8
nonlinear schrdinger
8
schrdinger equation
8
numerical simulations
8

Similar Publications

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Carbon Black Absorption Enhanced Fiber-Optic Photoacoustic Gas Sensing System with Ultrahigh Sensitivity.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.

View Article and Find Full Text PDF

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

A simple and integrated fiber-optic real-time qPCR platform for remote and distributed detection of epidemic virus infection.

Biosens Bioelectron

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China; College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Quantitative polymerase chain reaction (qPCR) is a well-recognized technique for amplifying and quantifying nuclear acid, and its real-time monitoring capability, ultrahigh sensitivity, and accuracy make it a "golden-standard" tool in both molecular biology research and clinical diagnostics. However, current qPCR tests rely on bulky instrumentation and skilled laboratorians in centralized laboratories, which spatially and temporally separate the sample collection and test, leading to longer sample turnaround times (TATs) and limited working conditions. Herein, we propose an integrated optical fiber real-time polymerase chain reaction (iF-PCR) system that successfully allows convenient sample collection, rapid thermocycling, closed-loop thermal annealing, and real-time fluorescence detection in a tiny capillary reactor.

View Article and Find Full Text PDF

We developed a 915-nm pumped, passively Q-switched 976-nm ytterbium all-fiber laser with an average output power of 4.3 W. The laser utilizes a 16-cm Yb gain fiber, passively Q-switched by a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!