Stable and dynamic microtubules coordinately determine and maintain Drosophila bristle shape.

Development

Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.

Published: June 2012

Within interphase cells, microtubules (MTs) are organized in a cell-specific manner to support cell shape and function. Here, we report that coordination between stable and dynamic MTs determines and maintains the highly elongated bristle cell shape. By following MT-decorating hooks and by tracking EB1 we identified two MT populations within bristles: a stable MT population polarized with their minus ends distal to the cell body, and a dynamic MT population that exhibits mixed polarity. Manipulating MT dynamics by Klp10A downregulation demonstrates that MTs can initiate new shaft extensions and thus possess the ability to determine growth direction. Actin filament bundling subsequently supports the newly formed shaft extensions. Analysis of ik2 mutant bristles, established by elongation defects in the Drosophila ikkε homolog, led to the observation that stable and dynamic MT orientation and polarized organization are important for proper bristle elongation. Thus, we demonstrate for the first time that coordination between stable and dynamic MT sets that are axially organized yet differently polarized drives cell elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.076893DOI Listing

Publication Analysis

Top Keywords

stable dynamic
16
cell shape
8
coordination stable
8
shaft extensions
8
stable
5
dynamic microtubules
4
microtubules coordinately
4
coordinately determine
4
determine maintain
4
maintain drosophila
4

Similar Publications

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Must excimers quench fluorescence? This study aims to clarify the misconception that excimers are defective species with weak fluorescence. For this purpose, we utilized a rigid xanthene template to connect anthracene units for constructing an inter-excimer and an intra-excimer. Their photophysical properties were systematically investigated in solution and crystal forms, representing dynamic and static environments, respectively.

View Article and Find Full Text PDF

Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.

View Article and Find Full Text PDF

Influenza A viruses have been a threat to human health for the past 100 years. Understanding the dynamics and pathogenicity of the influenza viruses is of great value in controlling the influenza pandemic. Fluorescent protein-carrying recombinant influenza virus is a substantially useful tool for studying viral characteristics and high-throughput screening .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!