Within interphase cells, microtubules (MTs) are organized in a cell-specific manner to support cell shape and function. Here, we report that coordination between stable and dynamic MTs determines and maintains the highly elongated bristle cell shape. By following MT-decorating hooks and by tracking EB1 we identified two MT populations within bristles: a stable MT population polarized with their minus ends distal to the cell body, and a dynamic MT population that exhibits mixed polarity. Manipulating MT dynamics by Klp10A downregulation demonstrates that MTs can initiate new shaft extensions and thus possess the ability to determine growth direction. Actin filament bundling subsequently supports the newly formed shaft extensions. Analysis of ik2 mutant bristles, established by elongation defects in the Drosophila ikkε homolog, led to the observation that stable and dynamic MT orientation and polarized organization are important for proper bristle elongation. Thus, we demonstrate for the first time that coordination between stable and dynamic MT sets that are axially organized yet differently polarized drives cell elongation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.076893 | DOI Listing |
Adv Sci (Weinh)
January 2025
Haiping Fang, School of Physics, East China University of Science and Technology, Shanghai, 20023, China.
The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
Must excimers quench fluorescence? This study aims to clarify the misconception that excimers are defective species with weak fluorescence. For this purpose, we utilized a rigid xanthene template to connect anthracene units for constructing an inter-excimer and an intra-excimer. Their photophysical properties were systematically investigated in solution and crystal forms, representing dynamic and static environments, respectively.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Influenza A viruses have been a threat to human health for the past 100 years. Understanding the dynamics and pathogenicity of the influenza viruses is of great value in controlling the influenza pandemic. Fluorescent protein-carrying recombinant influenza virus is a substantially useful tool for studying viral characteristics and high-throughput screening .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!