Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2012.04.003DOI Listing

Publication Analysis

Top Keywords

mcl-1 bcl-xl
20
hnscc cells
16
proteasome inhibitor
12
trail receptor
12
inhibitor mg132
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
combination treatment
8

Similar Publications

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.

View Article and Find Full Text PDF

BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.

View Article and Find Full Text PDF

Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory.

View Article and Find Full Text PDF

The novel BCL-2/BCL-XL inhibitor APG-1252-mediated cleavage of GSDME enhances the antitumor efficacy of HER2-targeted therapy in HER2-positive gastric cancer.

Acta Pharmacol Sin

November 2024

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

HER2-positive gastric cancer has a poor prognosis, with a high incidence of drug resistance and a lack of effective treatments for drug-resistant patients. The exploration of the mechanism of resistance to HER2-targeted therapy in HER2-positive gastric cancer and the identification of effective strategies to reverse it are urgently needed. In this study, we found that HER2-targeted agents upregulated the expression of GSDME and that the overexpression of GSDME attenuated the sensitivity of HER2-targeted agents.

View Article and Find Full Text PDF

Objectives: This study assessed the anticancer potential of genetically modified exosomes engineered to express CD133-binding peptides on their surface and carry PD-L1 siRNA for the treatment of murine model of metastatic pancreatic cancer.

Methods: CD133-targeting exosomes (tEx) were generated by harvesting conditioned media from adipose-derived stem cells (ASCs) that had undergone transformation using pDisplay vectors encoding CD133-binding peptide sequences. Subsequently, siPD-L1-loaded CD133-targeting Exosomes, referred to as tEx(s), were created by incorporating PD-L1 siRNA into the tEx using Exofect kit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!