A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of the limitations of state-of-the-art micro-fabrication processes on the performance of pillar array columns for liquid chromatography. | LitMetric

We report on the practical limitations of the current state-of-the-art in micro-fabrication technology to produce the small pillar sizes that are needed to obtain high efficiency pillar array columns. For this purpose, nine channels with a different pillar diameter, ranging from 5 to 0.5 μm were fabricated using state-of the-art deep-UV lithography and deep reactive ion etching (DRIE) etching technology. The obtained results strongly deviated from the theoretically expected trend, wherein the minimal plate height (H(min)) would reduce linearly with the pillar diameter. The minimal plate height decreases from 1.7 to 1.2 μm when going from 4.80 to 3.81 μm diameter pillars, but as the dimensions are further reduced, the minimal plate heights rise again to values around 2 μm. The smallest pillar diameter even produced the worst minimal plate height (4 μm). An in-depth scanning electron microscopy (SEM) inspection of the different channels clearly reveals that these findings can be attributed to the micro-fabrication limitations that are inevitably encountered when exploring the limits of deep-UV lithography and DRIE etching processes. When the target dimensions of the design approach the etching resolution limits, the band broadening increases in a strongly non-linear way with the decreased pillar dimensions. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450 nm that we want to highlight with our paper highly non-linear relationship. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.03.054DOI Listing

Publication Analysis

Top Keywords

minimal plate
16
pillar diameter
12
plate height
12
highly non-linear
12
non-linear relationship
12
state-of-the-art micro-fabrication
8
pillar array
8
array columns
8
deep-uv lithography
8
drie etching
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!