4-Azidoproline (Azp) can tune the stability of the polyproline II (P(II)) conformation in collagen. The azido group in the 4R and 4S configurations stabilizes and destabilizes the P(II) conformation, respectively. To obtain insights into the dependence of the conformational stability on the azido configuration, we carried out Fourier transform (FT) IR experiments with four 4-azidoproline derivatives, Ac-(4R/S)-Azp-(NH/O)Me. We found that the amide I and azido IR spectra are different depending on the azido configuration and C-terminal structure. The origin of such spectral differences between 4R and 4S configurations and between C-terminal methylamide and ester ends was elucidated by quantum chemistry calculations in combination with (1)H NMR and time- and frequency-resolved IR pump-probe spectroscopy. We found that the azido configurations and C-terminal structures affect intramolecular interactions, which are responsible for the ensuing conformational and thereby IR spectral differences. Consequently, 4-azidoproline conformations modulated by azido configurations can be probed by IR spectroscopy. These findings suggest that 4-azidoproline can be both a structure-control and -probing element, which enables the infrared tracking of proline roles in protein structure, function, and dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp1085119 | DOI Listing |
In the hydrated title complex, [Fe(dpa)(N)]·HO (dpa is 2,2'-di-pyridyl-amine, CHN), the Fe ion is coordinated in a distorted octa-hedral manner by two neutral, chelating dpa ligands and two anionic, monodentate azide (N ) ions in a -configuration. Distortion results from different Fe-N bond lengths [2.1397 (13)-2.
View Article and Find Full Text PDFMethods
March 2024
Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA. Electronic address:
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA).
View Article and Find Full Text PDFbioRxiv
November 2023
Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104.
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA).
View Article and Find Full Text PDFJ Org Chem
September 2023
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
We report on the stereoselective multigram scale preparation of cyclohexyl- and phenyl thioglycosides of 2-azido-2-deoxy-β-d-gluco- and galactopyranosides from d--acetylglucosamine using a catalytic and solvent-free method. Two of the prepared building blocks were used as key intermediates for the synthesis of human milk oligosaccharides LNT and LNnT in their protected form.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115, Bonn, Germany.
Transition-metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen-atom-transfer reactivity. They are typically prepared in situ upon optically induced N elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of the primary photo-induced processes and the structural/electronic factors mediating the N loss with birth of the terminal metal-nitrogen core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!