Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pressure-induced transport of double-stranded DNA (dsDNA) from 10 base pairs (bp) to 1.9 mega base pairs (Mbp) confined in a 750-nm-radius capillary was studied using a hydrodynamic chromatographic technique and four distinct length regions (rod-like, free-coiled, constant mobility, and transition regions) were observed. The transport behavior varied closely with region changes. The rod-like region consisted of DNA shorter than the persistence length (∼150 bp) of dsDNA, and these molecules behaved like polymer rods. Free-coiled region consisted of DNA from ∼150 bp to ∼2 kilo base pairs (kbp), and the effective hydrodynamic radius R(HD) of these DNA scaled to L(0.5) (L is the DNA length in kbp), a characteristic property of freely coiled polymers. Constant mobility region consisted of DNA longer than ∼100 kbp, and these DNA had a constant hydrodynamic mobility and could not be resolved. Transition region existed between free-coiled and constant mobility regions. The transport mechanism of DNA in this region was complicated, and a general empirical equation was established to relate the mobility with DNA length. Understanding of the fundamental principles of DNA transport in narrow capillary channels will be of great interest in the development of "lab-on-chip" technologies and nongel DNA separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja302621v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!