Large aperture static imaging spectrometry (LASIS) is a kind of joint temporally and spatially modulated Fourier transform imaging spectrometry. In such instruments, lateral shearing interferometer is a key element, the most frequently used type of which is the Sagnac interferometer. In this configuration, one half of the light entering the interferometer backtracks and causes a great decrease in energy efficiency. The present paper proposes a modified Mach-Zehnder lateral shearing interferometer structure to tackle this problem. With the ability to produce the same lateral shear, it features the advantage of dual channel output. We present a ray tracing procedure to induce the general expression of the lateral shear as well as analyze the contributions of error sources to the shear accuracy. The results serve as a new idea for the design of large aperture static imaging spectrometers and can be used to instruct the design and optimization of this kind of imaging spectrometer.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!