[Determination of cationic degree in PDA with near infrared reflectance spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi

Key Laboratory of the Three Gorges Reservoir Region Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400045, China.

Published: February 2012

Cationic degree has been investigated as an important factor in polyacrylamide materials. Diallyl dimethyl ammonium chloride and acrylamide (PDA) was grafted by free radical polymerisation of acrylamide monomer (AM) onto the cationic monomer dimethyl diallyl ammonium chloride (DMDAAC). In the present study, near infrared reflectance spectroscopy (NIRS) was used as a rapid and accurate method to determine the cationic degree in the PDA. In this experiment, the near infrared spectra of 37 PDA samples that were self-prepared in the laboratory from 900.00 to 1 700.00 were collected. The characteristic peaks and the entire spectrum segment as the input layer neurons in radical basis function (RBF) were investigated for establishing the mathematical conversion NIRS calibration mode. For reduction of the NIR spectrum noise, the wavelet analysis was used as pretreatment process. The measured value was determined by using precipitation titration and a comparison between the simulated value and measured value was made. It was found that the external validation determination coefficient was more than 0.9, and the simulation value is in good agreement with the measured value. The statistics analysis showed that there was no significant difference between simulated value and measured value. Therefore, the calibration model (RBF neural network) established in this paper exhibited a remarkable feasibility for predicting the cationic degree of PDA based on the near infrared spectroscopy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cationic degree
16
degree pda
12
infrared reflectance
8
ammonium chloride
8
simulated measured
8
pda
5
[determination cationic
4
degree
4
infrared
4
pda infrared
4

Similar Publications

Graphene or MoS nanopores: pore adhesion and protein linearization.

Nanoscale

December 2024

Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.

Nanopores drilled in materials can electrophoretically drive charged biomolecules to enable their detection. Here, we explore and compare two-dimensional nanopores, graphene and MoS, in order to unravel their advantages and disadvantages with regard to protein detection. We tuned the protein translocation and its dynamics by the choice and concentration of the surrounding solvent.

View Article and Find Full Text PDF

Illite Dissolution under Sodium Hydroxide Solution: Insights from Reactive Molecular Dynamics.

ACS Omega

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China.

In alkali/surfactant/polymer (ASP) flooding systems, alkalis react with clay minerals such as Illite, montmorillonite, and kaolinite, leading to reservoir damage and impacting oil recovery rates. Therefore, studying the dissolution effects of strong alkalis on clay minerals is crucial for improving oil recovery. This study uses Illite as a representative clay mineral and employs the ReaxFF reactive force field and molecular dynamics simulations to model its dissolution in NaOH solution.

View Article and Find Full Text PDF

The temperature-resolved structure evolution of quinary and quaternary equimolar oxides containing Mg, Ni, Zn, Co, and Cu is investigated by in situ synchrotron diffraction. Important structural modifications occur already at mild temperatures and depend on the elements involved. All quaternary compounds with χ(Cu) = 0.

View Article and Find Full Text PDF

Lone-pair expression is significantly influenced by geometric constraints in hybrid metal halides (HMHs). Two-dimensional (2D) HMHs possess reduced structural dimensionality, allowing for a wide range of off-center displacement of the metal center. However, the effect of lone-pair-induced off-center distortion on the geometric configuration of inorganic units, electronic properties, and exciton emissions in 2D HMHs remains unclear.

View Article and Find Full Text PDF

ABO perovskite materials with small cations at the A site, especially with ordered cation arrangements, have attracted a lot of interest because they show unusual physical properties and deviations from general perovskite tendencies. In this work, A-site-ordered quadruple perovskites, RMnNiMnO with R = Nd, Sm, Gd, and Dy, were synthesized by a high-pressure, high-temperature method at about 6 GPa. Annealing at about 1500 K produced samples with additional (partial) B-site ordering of Ni and Mn cations, crystallizing in space group -3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!