Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cells.

J Biol Chem

MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Scotland DD1 5EH, United Kingdom.

Published: June 2012

Plasmacytoid dendritic cells (pDCs) are characterized by their ability to produce high levels of type 1 interferons in response to ligands that activate TLR7 and TLR9, but the signaling pathways required for IFN production are incompletely understood. Here we exploit the human pDC cell line Gen2.2 and improved pharmacological inhibitors of protein kinases to address this issue. We demonstrate that ligands that activate TLR7 and TLR9 require the TAK1-IKKβ signaling pathway to induce the production of IFNβ via a pathway that is independent of the degradation of IκBα. We also show that IKKβ activity, as well as the subsequent IFNβ-stimulated activation of the JAK-STAT1/2 signaling pathway, are essential for the production of IFNα by TLR9 ligands. We further show that TLR7 ligands CL097 and R848 fail to produce significant amounts of IFNα because the activation of IKKβ is not sustained for a sufficient length of time. The TLR7/9-stimulated production of type 1 IFNs is inhibited by much lower concentrations of IKKβ inhibitors than those needed to suppress the production of NFκB-dependent proinflammatory cytokines, such as IL-6, suggesting that drugs that inhibit IKKβ may have a potential for the treatment of forms of lupus that are driven by self-RNA and self-DNA-induced activation of TLR7 and TLR9, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365954PMC
http://dx.doi.org/10.1074/jbc.M112.345405DOI Listing

Publication Analysis

Top Keywords

tlr7 tlr9
12
production type
8
type interferons
8
plasmacytoid dendritic
8
dendritic cells
8
ligands activate
8
activate tlr7
8
signaling pathway
8
production
6
ikkβ
5

Similar Publications

Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.

View Article and Find Full Text PDF

Pleomorphic adenoma (PA) is a benign salivary gland tumour that may recur or undergo malignant transformation (CXPA). Toll-like receptors (TLR) mediate immune responses triggered by various agents such as viruses and are related to tumour formation either by stimulating or suppressing their growth, with variation across different tumour entities. We compared TLR immunohistochemical expression in PA, its recurrent counterparts and CXPA and evaluated the effect of virus presence in these tumours.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing outbreaks of various viral infections highlight the urgent need for new antiviral compounds, with a focus on immunomodulatory drugs due to the immunotoxic properties of many viruses.
  • A synthetic compound related to indole-3-carboxylic acid derivatives (referred to as XXV) has been developed, demonstrating antiviral and interferon-inducing activities in a macrophage-like cell model.
  • The study utilized real-time PCR to show that XXV significantly stimulates the expression of toll-like receptors, interferons, and cytokines, indicating its role as an activator of innate immunity and its potential in fighting viral pathogens.
View Article and Find Full Text PDF

NF-κB c-Rel is a critical regulator of TLR7-induced inflammation in psoriasis.

EBioMedicine

December 2024

Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA; Louis Stokes Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA. Electronic address:

Background: Nuclear factor kappa B (NF-κB) c-Rel is a psoriasis susceptibility locus, however mechanisms underlying c-Rel transactivation during disease are poorly understood. Inflammation in psoriasis can be triggered following Toll-like Receptor 7 (TLR7) signalling in dendritic cells (DCs), and c-Rel is a critical regulator of DC function. Here, we studied the mechanism of TLR7-induced c-Rel-mediated inflammation in DCs.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmacytoid dendritic cells (pDCs) are important for immune responses but are rare in blood and less effective in cancer, making their use in therapies difficult.
  • Researchers developed a new method to differentiate pDCs from cord blood stem cells using specific growth factors like SR-1 and GM-CSF, leading to a significant yield of functional pDCs.
  • The study found that these cord blood-derived pDCs closely resemble primary pDCs and can potentially enhance anti-tumor immune responses, making them promising candidates for cancer therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!