Plasmacytoid dendritic cells (pDCs) are characterized by their ability to produce high levels of type 1 interferons in response to ligands that activate TLR7 and TLR9, but the signaling pathways required for IFN production are incompletely understood. Here we exploit the human pDC cell line Gen2.2 and improved pharmacological inhibitors of protein kinases to address this issue. We demonstrate that ligands that activate TLR7 and TLR9 require the TAK1-IKKβ signaling pathway to induce the production of IFNβ via a pathway that is independent of the degradation of IκBα. We also show that IKKβ activity, as well as the subsequent IFNβ-stimulated activation of the JAK-STAT1/2 signaling pathway, are essential for the production of IFNα by TLR9 ligands. We further show that TLR7 ligands CL097 and R848 fail to produce significant amounts of IFNα because the activation of IKKβ is not sustained for a sufficient length of time. The TLR7/9-stimulated production of type 1 IFNs is inhibited by much lower concentrations of IKKβ inhibitors than those needed to suppress the production of NFκB-dependent proinflammatory cytokines, such as IL-6, suggesting that drugs that inhibit IKKβ may have a potential for the treatment of forms of lupus that are driven by self-RNA and self-DNA-induced activation of TLR7 and TLR9, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365954 | PMC |
http://dx.doi.org/10.1074/jbc.M112.345405 | DOI Listing |
Biol Pharm Bull
December 2024
Department of Radiation Biosciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science.
Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.
View Article and Find Full Text PDFAPMIS
January 2025
Department of Pathology, University Hospital of Helsinki and Turku, Helsinki, Finland.
Pleomorphic adenoma (PA) is a benign salivary gland tumour that may recur or undergo malignant transformation (CXPA). Toll-like receptors (TLR) mediate immune responses triggered by various agents such as viruses and are related to tumour formation either by stimulating or suppressing their growth, with variation across different tumour entities. We compared TLR immunohistochemical expression in PA, its recurrent counterparts and CXPA and evaluated the effect of virus presence in these tumours.
View Article and Find Full Text PDFViruses
October 2024
Faculty of Biotechnology, Lomonosov Moscow University of Fine Chemical Technology, Moscow 119571, Russia.
EBioMedicine
December 2024
Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106, USA; Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, USA; University Hospitals-Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA; Louis Stokes Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA. Electronic address:
Background: Nuclear factor kappa B (NF-κB) c-Rel is a psoriasis susceptibility locus, however mechanisms underlying c-Rel transactivation during disease are poorly understood. Inflammation in psoriasis can be triggered following Toll-like Receptor 7 (TLR7) signalling in dendritic cells (DCs), and c-Rel is a critical regulator of DC function. Here, we studied the mechanism of TLR7-induced c-Rel-mediated inflammation in DCs.
View Article and Find Full Text PDFFront Immunol
November 2024
Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!