Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370242 | PMC |
http://dx.doi.org/10.1074/jbc.M112.348888 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!