The successive coupling of an alkoxy(aryl/heteroaryl)carbene complex of chromium with either a ketone or an imide lithium enolate and then a 3-substituted (H, TMS, PhCH(2), PhCH(2)CH(2), Me) propargylic organomagnesium reagent has afforded novel hydroxy-substituted bicyclic [4.3.0]-γ-alkylidene-2-butenolides with three modular points that has allowed the efficient introduction of molecular complexity, including a homopropargylic alcohol core. The selective formation of these five- or six-component heterobicyclisation products is the result of the regioselective integration of the Grignard reagent as a propargyl fragment followed by a cascade CO/alkyne/CO insertion, ketene trapping and elimination sequence. By using lithium enolates of chiral N-acetyl-2-oxazolidinones and the corresponding propargylic organocerium reagents, both enantiomers of these bicyclic heterocycles were efficiently prepared with very high enantiomeric purity. Architecturally, these fused bicyclic butenolides are characterised by a highly unsaturated and oxygenated core and they exhibit strong blue fluorescence in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102288 | DOI Listing |
J Am Chem Soc
January 2025
Organisch-Chemisches Institut, Universität Münster, Münster 48149, Germany.
Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFSci Adv
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China.
Imidazo[1,2-]pyridines are privileged heterocycles with diverse applications in medicinal chemistry; however, the catalytic asymmetric synthesis of these heterocyclic structures remains underexplored. Herein, we present an efficient and modular approach for the atroposelective synthesis of axially chiral imidazo[1,2-]pyridines via an asymmetric multicomponent reaction. By utilizing a chiral phosphoric acid catalyst, the Groebke-Blackburn-Bienaymé reaction involving various 6-aryl-2-aminopyridines, aldehydes, and isocyanides gave access to a wide range of imidazo[1,2-]pyridine atropoisomers with high to excellent yields and enantioselectivities.
View Article and Find Full Text PDFNature
November 2024
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Multicomponent reactions - those where three or more substrates combine into a product - have been highly useful in rapidly building chemical building blocks of increased complexity, but achieving this enzymatically has remained rare. This limitation primarily arises because an enzyme's active site is not typically set up to address multiple substrates, especially in cases involving multiple radical intermediates. Recently, chemical catalytic radical sorting has emerged as an enabling strategy for a variety of useful reactions.
View Article and Find Full Text PDFNat Chem
December 2024
Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!