Preparation of carbohydrate arrays by using Diels-Alder reactions with inverse electron demand.

Chemistry

Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.

Published: May 2012

Carbohydrate microarrays are an emerging tool for the high-throughput screening of carbohydrate-protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels-Alder reaction with inverse-electron-demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate-dienophile conjugates that were printed onto tetrazine-modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high-quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201200382DOI Listing

Publication Analysis

Top Keywords

preparation carbohydrate
8
carbohydrate arrays
8
carbohydrate microarrays
8
glass slides
8
reducing oligosaccharides
8
carbohydrate
5
preparation
4
arrays diels-alder
4
diels-alder reactions
4
reactions inverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!