The atypical cadherin fat (ft) was originally discovered as a tumor suppressor in Drosophila and later shown to regulate a form of tissue patterning known as planar polarity. In mammals, four ft homologs have been identified (Fat1-4). Recently, we demonstrated that Fat4 plays a role in vertebrate planar polarity. Fat4 has the highest homology to ft, whereas other Fat family members are homologous to the second ft-like gene, ft2. Genetic studies in flies and mice imply significant functional differences between the two groups of Fat cadherins. Here, we demonstrate that Fat family proteins act both synergistically and antagonistically to influence multiple aspects of tissue morphogenesis. We find that Fat1 and Fat4 cooperate during mouse development to control renal tubular elongation, cochlear extension, cranial neural tube formation and patterning of outer hair cells in the cochlea. Similarly, Fat3 and Fat4 synergize to drive vertebral arch fusion at the dorsal midline during caudal vertebra morphogenesis. We provide evidence that these effects depend on conserved interactions with planar polarity signaling components. In flies, the transcriptional co-repressor Atrophin (Atro) physically interacts with Ft and acts as a component of Fat signaling for planar polarity. We find that the mammalian orthologs of atro, Atn1 and Atn2l, modulate Fat4 activity during vertebral arch fusion and renal tubular elongation, respectively. Moreover, Fat4 morphogenetic defects are enhanced by mutations in Vangl2, a 'core' planar cell polarity gene. These studies highlight the wide range and complexity of Fat activities and suggest that a Fat-Atrophin interaction is a conserved element of planar polarity signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328180PMC
http://dx.doi.org/10.1242/dev.077461DOI Listing

Publication Analysis

Top Keywords

planar polarity
24
fat family
12
tissue morphogenesis
8
renal tubular
8
tubular elongation
8
vertebral arch
8
arch fusion
8
polarity signaling
8
fat
7
planar
7

Similar Publications

Aiming at the construction of novel platforms with excellent performances in both circularly polarized photoluminescence (CP-PL) and electrochemiluminescence (CP-ECL), a new family of pyrenophanes with rigidly locked pyrene dimers and varied bridges has been designed and synthesized. Attributed to densely packed pyrene excimers, the resultant pyrenophanes revealed tunable bridge-dependent emission behaviors, as investigated by femtosecond time-resolved transient absorption spectroscopy. More importantly, all these planar chiral pyrenophanes display strong CP-PL with large dissymmetry factor (gPL) values up to 0.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

Design of Microstrip Antenna Integrating 24 GHz and 77 GHz Compact High-Gain Arrays.

Sensors (Basel)

January 2025

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

The swift advancement of contemporary communication technology, along with the development of radar systems, has raised the requirements for antenna systems. In this work, an integrated array antenna operating in the 24 GHz and 77 GHz frequency bands is proposed. The microstrip antenna array element uses a width reduction approach to reduce its volume by 39.

View Article and Find Full Text PDF

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.

View Article and Find Full Text PDF

Photofunctional cyclophane host-guest systems.

Chem Commun (Camb)

January 2025

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!