Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min(-1) (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min(-1). For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min(-1). All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/57/9/2819DOI Listing

Publication Analysis

Top Keywords

ionization chambers
16
fff beams
16
collection efficiency
16
dose rate
12
dose rates
12
liquid ionization
12
dose
8
high dose
8
reference dosimetry
8
dosimetry fff
8

Similar Publications

Reference dosimetry measurement in a pencil beam scanning system can exhibit dose fluctuation due to intra-spill spot positional drift. This results in a noisy reference dosimetry measurement against energy which could introduce errors in monitor unit calibration. The aim of this study is to investigate the impact of smoothing the reference dosimetry measurements on the type A uncertainty.

View Article and Find Full Text PDF

Background: The clinical use of flattening filter free (FFF) radiotherapy has significantly increased in recent years due to its effective enhancement of dose rates and reduction of scatter dose. A proposal has been made to adjust the incident electron angle of the accelerator to expand the application of FFF beams in areas such as large planning target volumes (PTVs). However, the inherent softening characteristics and non-uniformity of lateral dose distribution in FFF beams inevitably lead to increased dosimetry errors, especially for ionization chambers widely used in clinical practice, which may result in serious accidents during FFF radiotherapy.

View Article and Find Full Text PDF

The massic activity of Ac in 0.1 mol/L HCl was measured by multiple primary methods over four consistent measurement campaigns. Results from the triple-to-double coincidence ratio (TDCR) method of liquid scintillation (LS) counting were in accord with other LS-based primary methods.

View Article and Find Full Text PDF

. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.

View Article and Find Full Text PDF

Results of the proficiency test for the Ka CMC of the SSDL-ININ Mexico, for diagnostic radiology IEC 61267:2005 and radiation protection ISO 4037:2019 X-ray beam qualities.

Radiat Prot Dosimetry

December 2024

Former staff of Secondary Standard Dosimetry Laboratory, Centro de Protección e Higiene de la Radiaciones, Carretera La Victoria II Km 2½, e/Monumental y Final, Guanabacoa, La Habana, 11100, Cuba.

The present work describes the results for the bilateral comparison between the Secondary Standards Dosimetry Laboratories of the Instituto Nacional de Investigaciones Nucleares (SSDL-ININ), Mexico, and the pilot laboratory, the Centro de Protección e Higiene de las Radiaciones (SSDL-CPHR), Cuba, for the realization of the air kerma (${\boldsymbol{K}}_{\boldsymbol{a}}$) quantity to: (i) diagnostic X-ray (DXR) IEC 61267:2005 beam qualities: RQR 5 RQR 9, RQT 8, and RQT 9 and (ii) radiation protection (RP) ISO 4037:2019 X-ray beam qualities: N60, N100, and W60, as well S-Cs for gamma radiation. The matched and characterized reference fields are realized at SSDL-ININ with a Toshiba E7252FX X-ray tube. In all cases, the ${\boldsymbol{K}}_{\boldsymbol{a}}$ measurements are traceable to PTB, except for S-Cs, traceable to ININ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!