The present study aimed to estimate the clonogenic and differentiation potential of induced pluripotent stem (iPS) cells exposed to ionizing radiation. Compared with mouse hematopoietic stem/progenitor cells, iPS cells were less sensitive to radiation. To examine the effect of ionizing radiation on the early differentiation pathway of iPS cells, we assessed embryoid body (EB) formation. Although EB formation was observed at all radiation doses, EB diameter decreased in a radiation dose-dependent manner. At the same time, we analyzed the expression of genes specific to differentiation in the initial iPS cells and cells of EB. The expression of the endoderm marker Afp increased remarkably in cells of EB derived from non-irradiated iPS cells; however, in irradiated cells, this expression significantly decreased in a radiation dose-dependent manner. Further, the expressions of the pluripotent stem cell markers Nanog and Oct-4 and the early mesoderm marker Brachyury significantly decreased. The results of the present study suggest that radiosensitivity with regard to gene expression differs at various stages in the early differentiation pathways of iPS cells that lead to the formation of the 3 germ layers; the sensitivity is the highest in the genes expressed during the differentiation pathways of iPS cells, leading to the formation of the endoderm.

Download full-text PDF

Source
http://dx.doi.org/10.1269/jrr.11138DOI Listing

Publication Analysis

Top Keywords

ips cells
28
ionizing radiation
12
pluripotent stem
12
cells
12
induced pluripotent
8
early differentiation
8
decreased radiation
8
radiation dose-dependent
8
dose-dependent manner
8
cells expression
8

Similar Publications

A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.

Biol Pharm Bull

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.

A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.

View Article and Find Full Text PDF

Generation of an induced pluripotent stem cell line (SMBCi022-A) from a patient with Fabry disease.

Stem Cell Res

January 2025

Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014 Shandong, China; Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University& Shandong Academy of Medical Sciences, Ji'nan 250062 Shandong, China; Key Lab for Biotech-Drugs of National Health Commission, Ji'nan 250062 Shandong, China; Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062 Shandong, China. Electronic address:

Fabry disease (FD) is a systemic disease in which globotriaosylceramide and other naturally occurring glycosphingolipid accumulate in various tissues throughout the body due to mutation of α-galactosidase A (GLA). These induced pluripotent stem cells (iPSCs) were generated from a 10-year-old male patient's urine carrying the GLA c.1080_1082del Fabry disease mutation.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common malignant tumor of the male reproductive system. In this study, we establish an induced pluripotent stem cell (iPSC) line from a male diagnosed with PC. of This iPSCs line was generated from the peripheral blood mononuclear cells (PBMCs) using a non-integrated Sendai virus.

View Article and Find Full Text PDF

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!