The reactions of gas-phase Cu(+)((1)S) and Cu(+)((3)D) with CF(3)X and CH(3)X (X = Cl, Br, and I) have been examined experimentally using the drift cell technique at 3.5 Torr in He at room temperature. State-specific product channels and overall bimolecular rate constants for depletion of the two Cu(+) states were determined using electronic state chromatography. The results showed that Cu(+)((1)S) participates exclusively in association with all of these neutrals, whereas, depending on the neutral, Cu(+)((3)D) initiates up to three bimolecular processes, resulting in the formation of CuX(+), CuC(H/F)(3)(+), and C(H/F)(3)X(+). Possible structures for the singlet association products were explored using density functional methods. These calculations indicated that Cu(+) preferentially associates with the labile halogen (Cl, Br, I) with all neutrals except CF(3)Cl, for which a "backside" geometry occurs in which Cu(+)((1)S) is weakly bound to the -CF(3) end of the molecule. All products observed on the triplet reaction surface can be understood in terms of either known or calculated thermochemical requirements. Product distributions and overall reaction efficiencies for C-X bond activation (X = Br, I) through Cu(+)((3)D) suggest that the orientation of the neutral dipole has little or no effect in controlling access to specific product channels. Likewise, second-order rate constants for reactions with X = Br and I indicate efficient depletion of Cu(+)((3)D) and do not exhibit the dramatic variations in reaction efficiency previously observed with CH(3)Cl and CF(3)Cl. These results suggest that C-X bond activation proceeds through a bond-insertion mechanism as opposed to direct abstraction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp300587yDOI Listing

Publication Analysis

Top Keywords

c-x bond
12
bond activation
12
product channels
8
rate constants
8
state-specific reactions
4
cu+1s
4
reactions cu+1s
4
cu+1s ch3x
4
ch3x cf3x
4
cf3x exploring
4

Similar Publications

α-Halo borides are generally constructed Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the -methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C-X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd-X bond and assist in C-X bond formation and is verified by DFT calculations.

View Article and Find Full Text PDF

C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.

View Article and Find Full Text PDF

The [CH3OH-CH2X2] (X = Cl, Br, and I) complexes have been studied to understand the tendency towards the formation of hydrogen bonds and halogen bonds. Three different types of interactions viz., C-X· · ·O, C-H· · ·O, and O-H· · ·X, are possible between the CH3OH and CH2X2.

View Article and Find Full Text PDF

C(sp3)-H Bond Functionalization of 8-Methylquinolines.

Chem Asian J

December 2024

CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR, Chemical Technology, Palampur, India, Palampur, 176061, Palampur, INDIA.

Quinolines have emerged as essential components in various medicinal agents, playing a key role in treating various ailments. Numerous drugs with a quinoline core have been recognized for their antimalarial, antibacterial, and anticancer activities and have been successfully commercialized, including chloroquine, ciprofloxacin, topotecan, etc. Over the past two decades, we have witnessed a tremendous expansion in the C-H bond functionalization of quinoline scaffolds to widen this chemical space for drug discovery further.

View Article and Find Full Text PDF

NHC boryl radical mediated halogen atom transfer (XAT) is useful in organic synthesis. Yet, most of the reaction ends only with reducing the halogen to hydrogen, that is, the C-X to C-H. This is especially dominant for electron-deficient alkyl halides, where the formed electrophilic radical reacts rapidly with NHC boranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!