The adsorption of molecular films made of small molecules with a large intrinsic electrical dipole has been explored. The data indicate that such dipolar molecules may be used for altering the interface dipole screening at the metal electrode interface in organic electronics. More specifically, we have investigated the surface electronic spectroscopic properties of zwitterionic molecules containing 12π electrons of the p-benzoquinonemonoimine type, C(6)H(2)(···NHR)(2)(···O)(2)(R = H (1), n-C(4)H(9) (2), C(3)H(6)-S-CH(3) (3), C(3)H(6)-O-CH(3) (4), CH(2)-C(6)H(5) (5)), adsorbed on Au. These molecules are stable zwitterions by virtue of the meta positions occupied by the nitrogen and oxygen substituents on the central ring, respectively. The structures of 2-4 have been determined by single crystal X-ray diffraction and indicate that in these molecules, two chemically connected but electronically not conjugated 6π electron subunits are present, which explains their strong dipolar character. We systematically observed that homogeneous molecular films with thickness as small as 1 nm were formed on Au, which fully cover the surface, even for a variety of R substituents. Preferential adsorption toward the patterned gold areas on SiO(2) substrates was found with 4. Optimum self-assembling of 2 and 5 results in ordered close packed films, which exhibit n-type character, based on the position of the Fermi level close to the conduction band minimum, suggesting high conductivity properties. This new type of self-assembled molecular films offers interesting possibilities for engineering metal-organic interfaces, of critical importance for organic electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja212104bDOI Listing

Publication Analysis

Top Keywords

molecular films
16
organic electronics
8
films
5
molecules
5
altering static
4
static dipole
4
dipole surfaces
4
surfaces chemistry
4
molecular
4
chemistry molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!